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Abstract

A new approach, two level simulation (TLS), is developed based on the explicit reconstruction of the small-scale veloc-
ity by solving the small-scale governing equations on the domain with reduced dimension representing a collection of one-
dimensional lines embedded in the three-dimensional flow domain. A coupled system of equations, that is not based on an
eddy-viscosity hypothesis, is derived based on the decomposition of flow variables into the large-scale and the small-scale
components without introducing the concept of filtering. Simplified treatment of the small-scale equations is proposed
based on neglecting the small-scale advective and dissipative terms in the line orthogonal directions. Fully coupled simu-
lation of the forced isotropic turbulence at Rek � 65, 114 demonstrates potential benefits and challenges of the TLS
approach for high-Re turbulent flows using coarse grids.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Direct numerical simulation (DNS) of high-Reynolds (Re) number turbulent flows is computationally very
expensive because of the resolution requirement needed to accurately represent the whole range dynamically
important scales. Even with the advent of massively parallel computers, DNS is still limited to relatively low
Re number turbulent flows [1,2]. Large eddy simulation (LES) approach, where only large, energy containing
scales are simulated by the filtered Navier–Stokes equations with the effect of the rest of the scales modeled,
has been at frontier of high-Re turbulent research for a long time. In LES, the large-scales are separated with
help of filtering operation applied to the Navier–Stokes equations and the major effort is concentrated on
modeling of the residual stress in terms of the large-scale (resolved) velocity (see, for example, recent reviews
by Piomelli [3]; Meneveau and Katz [4]). The residual stress is usually referred as the subfilter stress (SFS), or
the subgrid stress (SGS) depending on the meaning of the filtering operation. Proved to be very successfully
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for classical geometrically simple flows, LES is still waiting to live up to expectations to be a viable method to
simulate high-Re complex industrial flows [5].

LES aims to describe the dynamics of the large-scale (filtered) fields which are usually obtained by applying
a filter G(x,D) to the actual fields to filter out the small-scales of the flow. For example, the filtered velocity �ui is
defined as
�uiðxÞ ¼
Z

X
uiðyÞGðx� y;DÞdy; x; y 2 X � R3 ð1Þ
Here, D is the filter width and X is flow domain. The filtering procedure, being a convolution integral oper-
ation, introduces unclosed terms in the LES equations which results in a complex task of creating a suitable
model for the residual stress. In addition to unavoidable phenomenology introduced by the residual stress
model parameters, the filtering also creates extra difficulties associated with non-commutation of the filtering
operation with spatial differentiation if the filter width is not uniform [6,7]. This makes it problematic to derive
LES equations in consistent way without invoking additional assumptions. It is also very difficult to relate the
statistics of the filtered fields to the statistics of the experimental or direct numerical simulation data [8]. Be-
sides, majority of practical LES applications do not use explicit filtering in the numerical integration of the
filtered governing equation. It is tacitly assumed that the discrete grid representation of the flow variables
can be viewed as implicitly ‘grid filtered’, i.e., ~ui, where tilde denotes implicit filtering [9].

Assuming that filtering and differentiation commutes, which is true only for constant width explicit filters in
infinite or periodic domains, non-commutation between filtering and product operations gives rise to the
introduction of the residual stress sij ¼ uiuj � �ui�uj into the LES equations. This residual stress is assumed
to be computable during numerical simulations and needs to be modeled in terms of the resolved velocity,
i.e., sijð�uiÞ, in order to close the LES equations. However, as it was pointed out in a number of recent works
[10,11], the replacement of uiuj by �ui�uj þ sij automatically leads to a mathematical inconsistency. This is
because the convective product term �ui�uj has the spectral support bigger than any other term in the filtered
Navier–Stokes equations. As a result, the high wave number modes generated due to the non-linear interac-
tion and extended beyond the smallest resolvable LES scale cannot be fully computed by the LES equations.
In spectral space, the convective product term �ui�uj is represented by the convolution of spectral velocity with
itself, and therefore, has twice bigger spectral support than the filtered velocity �ui [12]. As a result, in practical
computations the high wave number modes can alias back to the resolved part of the spectrum producing
undesirable effects on the dynamics of the resolved turbulent scales. To alleviate this inconsistency and to
retain the spectral content of the convective product term an additional explicit filtering is suggested in the
form s0ij ¼ uiuj � �ui�uj [10,11]. However, there are still drawbacks of the explicit filtering approach. In addition
to the higher computational cost, the new representation of the residual stress s0ij is not Galilean invariant
unless the imposed filter is a spectral cut-off filter [10,13]. This effectively diminishes the capabilities of the
explicit filtered LES to study turbulent flows in complex geometries, when finite volume or finite difference
schemes are employed.

To accommodate the implicit filtering action of the grid into continuous LES equation the formal super-
position of explicit and implicit filtering is usually considered which leads to the doubly filtered Navier–Stokes
equations for ~�ui and ~�p [14]. Formally consistent, double filtering produces new types of stresses in the total
residual stress decomposition. Indeed, the total residual stress arising from the double filtering can be written
as a sum of subgrid large-scale stress (SGLS) and the grid filtered subfilter stress (GFSFS), i.e., ~�sij ¼ ~�rij þ eT ij,

where ~�rij ¼ g�uj�uk �
g~�uj~�uk and eT ij ¼ gujuk �g�uj�uk (see, for example [11]). This procedure requires triple and qua-

druple filtering application and sets additional challenges for viable modeling of the residual stresses. In prac-
tical application some additional assumptions, like commutation between the explicit filtering and implicit
filtering ð~�ui ¼ �~uiÞ, are usually needed [14].

There is yet another ‘‘non-commutative’’ feature of the filtering operation, which has received very little
attention in the LES literature. In general, the filtering operation does not commute with differentiation unless
the filter width is constant. Evidently, such filters are not well suited for LES studies of geometrically complex
turbulent flows where high turbulence regions may coexist with weakly turbulent or laminar regions. Most
works in this direction have been focused on two major approaches: the construction of explicit filters which
can commute with differentiation, at least up to the order of accuracy of the numerical scheme, and the explicit
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adding of the non-commutation terms into the filtered Navier–Stokes equation. Ghosal and Moin [15] pro-
posed an explicit filtering scheme that results in the additional commutation terms which are of the second
order with respect to the filter width. The construction of commutative non-uniform filters was further
addressed by van der Ven [16] and Vasilyev et al. [13]. The later work uses mapping of the non-uniform grid
in physical domain to the uniform grid in computational domain where the constant width filtering can be
performed. This approach was further generalized by Marsden et al. [17] to construct commutative filters
for unstructured grids. The second approach has received attention in the recent work of Geurts and Leonard
[18] who proposed the general LES equations with included non-commutative terms. The authors emphasized,
contrary to approaches which are based on the commutative filter construction, that the non-commutative
terms do not vanish for any non-uniform filter and have to be accounted and modeled explicitly. However,
the explicit adding of the non-commutation terms into the filtered Navier–Stokes system not only would com-
plicate the LES equations but also would require additional modeling of these new terms analogous to the
modeling of the residual stresses. A challenging task of modeling of the non-commutation terms has been fur-
ther addressed in works of van der Bos and Geurts [19,20].

Accounting for these new unclosed terms adds extra challenges to the LES methodology when modeling of
the near-wall turbulence is required. This area is especially critical for LES in order to become a viable pre-
dictive tool for high-Re number engineering flows. The key difficulties originate in the presence of quasi-
streamwise and hairpin vortices that play a dominant dynamic role in the near-wall turbulence. To resolve
these structures, a fine (comparable to DNS) grid resolution is required not only in wall normal direction
but also in the spanwise and streamwise direction. Computational complexity of resolving the wall layer (min-
imal number of the resolved scales) is Reynolds number dependent, and approximately scales at least as Re1.8

[21]. So far, most subgrid models perform poorly in the near-wall region when the grid resolution allows prac-
tically achievable computations.

Giving the facts that the filtering leads to extra assumptions in the derivation of the LES equations, as well
as difficulties in their implementation at discrete level, it is therefore, not well suited framework for geomet-
rically complex turbulent flows. The major objective of this work is to propose a computational framework
which requires the least modeling efforts and allows treatment of complex geometry without adopting major
assumptions or adding extra terms in the large-scale governing equations. Some earlier attempts of applying
the current approach to simulate turbulent non-homogeneous flows, such as mixing layers or a channel flow,
were reported in [22,23]. In the current study, we focus on the simulation of the forced isotropic turbulent field
as well as the interpretation of our model based on a priori analysis of DNS data.

2. Two scale decomposition approaches

The current approach, called two level simulation (TLS), does not require explicit or implicit filtering, and
provides more freedom to describe the contribution of the unresolved (small-scales) scales. It can be related to
multiscale decomposition methods. Multiscale description of turbulent flows have been proposed recently by
several authors including, among others, Hylin and McDonough [24] as the additive turbulent decomposition
approach; Dubois et al. [25,26] as the dynamic multilevel method; Hughes et al. [27–29] as the variational mul-
tiscale method; Laval et al. [30–32] as the rapid distortion theory model.

In all these studies the total flow field is decomposed into the resolved (large-scale) uL
i and the unresolved

(small-scale) uS
i components, i.e., ui ¼ uL

i þ uS
i , and then the coupled system of the large-scale and small-scale

governing equations is derived. Most of these multiscale methods, with the exception of the rapid distortion
theory (RDT) model, adopt the weak formulation of the Navier–Stokes equations, which allows to view the
large-scale field as a projection on a subspace spanned by the first elements of the adopted functional basis,
and the small-scale field as a projection on the complement subspace. The common feature of these methods
is the derivation of the small-scale governing equation which is needed for explicit computation of the small-
scales. As the result, the large-scale equation can be treated as closed, since the residual stress is directly com-
putable once the small-scale field is known.

The full coupled simulation of the large-scale and the small-scale governing equations is clearly computa-
tionally not viable since it will require DNS-like resolution to accurately represent the small-scale motions.
Therefore, some physical reasoning is usually invoked to simplify the small-scale governing equation and
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make it computationally tractable. For example, in the RDT model the scales are separated using standard
LES filtering, and the small-scale equation is derived by subtraction of the filtered (large-scale) equation from
the full Navier–Stokes equation. The small-scale equation can be simplified further by retaining only the non-
linear products of the large-scale and the small-scale velocities, while all other product terms can be modeled
using a turbulent viscosity and stochastic forcing, which leads to the linear form of the small-scale equation
and resembles the RDT equation [30,31,33]. The approach was applied to study several cases of 2D turbulent
flows as well as more complex case of the 3D decaying, isotropic turbulence, though in spectral representation.
Simultaneous numerical treatment of the coupled large-scale and the small-scale equations led to an increase
in computational time by a factor of 3 (!) over standard DNS [31]. The linear structure of the small-scale RDT
equation was further exploited by implementing the Lagrangian time integration scheme to the Gabor trans-
formed form of the small-scale equation [33]. Such procedure resulted in substantial saving in computational
time (up to a factor of 100) for 2D turbulent simulation compared DNS. However, in spite of the simplified
linear structure of the small-scale RDT equation, it still remains to be seen if the model would be applicable to
treat non-homogeneous turbulent flows in complex geometries.

Another class of multiscale numerical strategies referred as the dynamic multilevel methods (DML) origi-
nates from the dynamical systems theory and the utilizes the mathematical concept of approximate inertial
manifold (AIM) that can be introduced to approximate the attractor of Navier–Stokes equations. Simplifica-
tion of the small-scale equation based on physical grounds, and obtained by neglecting the non-stationary
term, the mixed large-scale/small-scale term and the mutual small-scale product term, leads to a relation
for the AIM providing the closure for the large-scale dynamic equations [34,35]. The DML approach has been
developed and applied to simulation of 2D and 3D turbulent flows by Dubois et al. [25,26], and resulted in the
reduction of computational time up to a factor of 3 compared to DNS. However, most DML applications
have been implemented in spectral space for homogeneous isotropic flows in periodic domains. Spectral exten-
sion of the DML to treat non-homogeneous direction in turbulent channel flow has been reported by Bouchon
and Jauberteau [36]. Based on results of this work the authors suggest that the DML needs to be replaced by
the multi-domain decomposition technique to separate scales in order to treat flow in complex geometries.

Recognizing high computational cost of the explicit simulation of the small-scale equation, a different
approach was adopted by Hughes and co-authors [27] in developing the variational multiscale method
(VMS). Instead of resolving all dynamically relevant small-scale motions, the small-scale equation is solved
on a relatively coarse grid, while the ‘‘unresolved’’ part of the small-scale residual stress is modeled by using
the Smagorinsky eddy-viscosity model. To separate the scales, the large-scale equation is treated on an even coar-
ser grid, for example twice coarser grid. Thus, in the VMS approach all modeling is confined to the small-scales
equations only, while the large-scale equations are closed [27]. However, as it was pointed out in [37], this is only
partially true. Clearly, since the small-scales are represented by resolved modes, the unresolved portion of the
small-scales still affect the large-scales, and therefore corresponding terms requires modeling rather than being
neglected. The spectral VMS method with the Smagorinsky model has been successfully applied to simulate 3D
decaying isotropic turbulence [28] and low Reynolds number 2D turbulent channel flow [29].

However, an extension of the VMS method for finite volume or finite difference codes implemented in phys-
ical, rather than spectral space, is a very non-trivial task. Being formulated in the weak sense, the VMS
method requires construction of the complete hierarchical functional bases in physical space to separate scales
by projection, which is difficult to reconcile with the finite volume or finite difference discrete representation.

The present (TLS) approach follows the general logic of multiscale decomposition methods assuming that
flow fields are split into the large-scale and the small-scale components. There are two major distinctions from
others multi-scale methodologies. The TLS governing equations are formulated in the strong sense, i.e., without
resorting to integral form representation over corresponding trial functional spaces, and do not use notion of
filtering to separate scales. This makes the approach easily adaptable for the finite volume and finite difference
methods on geometrically complex, non-uniform grids. In order to reduce computational costs the small-scale
equations are solved on a ‘‘reduced’’ 3D domain, rather than the full 3D flow domain. This domain represents a
collection of intersecting lines embedded in the 3D domain. As a result, the small-scale governing equations
along these lines can be treated in a parallel fashion, making the TLS approach computationally feasible.

The paper is organized as follows: in Section 3, we formulate the large-scale and small-scale governing
equations without invoking filtering. We show that if the large-scale field is defined as the filtered quantity,
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then the large-scale equations are the same as the standard LES equations. In Section 4, we formulate the 3D
small-scale equations on a family of lines. Such a representation requires modeling of the transverse velocity
gradients along the lines. We present a simple model based on statistical analysis of DNS data. In Section 5,
we test the TLS approach for the forced isotropic turbulence simulated at two Reynolds numbers Rek = 65
and 114 based on the Taylor scale. Conclusions are given in Section 6.

3. Large-scale and small-scale equations

Decomposition approach is quite common in derivation of various governing equations in fluid mechanics
ranging from acoustics equations to Reynolds averaged equations for turbulent flows. Here, we consider a
case of the incompressible turbulent flow with uniform density q which can be described by velocity and pres-
sure fields (ui,p) and governed by Navier–Stokes equations in 3D domain X.
oui

ot
þ ouiuj

oxj
¼ � 1

q
op
oxi
þ m

o
2ui

ox2
j
;

oui

oxi
¼ 0 ð2Þ
To ease further notations, we also drop density in the pressure gradient term assuming that it is included in
the pressure field. When kinematic viscosity m = l/q, characteristic length L and velocity U scales of a problem
are such that the Reynolds number Re = UL/m is sufficiently high then the flow is turbulent. The challenge here
is to demonstrate a computationally feasible method that can be used to simulate high-Re flows.

In the LES approach, the grid resolution requirement can be substantially lowered by considering filtered
fields ð�ui; �pÞ. However, the large-scale field can also be obtained without using filters. A discrete LES approach,
which based on sampling of the total velocity instead of filtering has been proposed by Knaepen et al. [38] and
alleviates some difficulties of the traditional LES. Very often in practical computations or experiments, flow
field is known on the coarse (large-scale) grid and can be thought of as the approximations to the sampled
values of the true flow fields (ui,p). Clearly, such an interpretation of the large-scale velocity is more consistent
with probe measurement in experiments than the filtered velocity field.

In order to formulate TLS governing equations without invoking a concept of filtering, we first introduce a
class of the large-scale (LS) functions FL. Any LS quantity which belongs to this class is denoted by super-
script L, i.e., uL

i 2FL represents the LS velocity. Before defining the main property of the class FL, we present
two examples of the LS functions which can be viewed as members of FL. The first one is the filtered LES
velocity defined by Eq. (1). The second example can be constructed based on the underlying LS grid GD

and the total velocity ui with help of the LS operator:
uL
i ðxÞ ¼LDuiðxÞ ¼ ID �SD½uiðxÞ�; SD : uiðxÞ ! uL

i ðxkÞ;ID : uL
i ðxkÞ ! uL

i ðxÞ;
xk 2 GD � fx1; . . . ; xNg � X ð3Þ
Here, SD is a local averaging operator, ID is analogous to interpolation operator and acts on discrete function
uL

i ðxkÞ mapping it to continuous LS velocity uL
i ðxÞ. The local averaging operator SD can be quite general and

time dependent. It depends on the LS grid GD and the algorithm how the discrete LS value is actually ob-
tained. The simplest case of SD is the sampling operator when the LS velocity values is defined as the velocity
values at the nodes of GD, i.e., uL

i ðxkÞ ¼ uiðxkÞ. In more complex cases, the local averaging over some lines (one
or several) or volume can be applied. The LS quantity given by (3) is unique when the averaging operator SD

and the operator ID are fixed. In terms of ‘‘degrees of freedom’’ this construction is similar to traditional fil-
tering since the filtered field is also defined uniquely when two parameters are specified (the functional form of
filter G and the filter width D). However, the construction (3) is more versatile since it can allow non-uniform
grids with different local clustering, thus resolving different range of scales in various parts of the flow domain.

There are infinite number of possibilities to define LD, and generally, its exact structure is not known.
Therefore, we do not define the class FL based on operator form as given by Eq. (3) or (1). In addition,
FL may contain some other LS fields which cannot be represented in operator form, whether they are
obtained by convolution with a filter or by means of a composite operator LD. Instead, we will assume that
for a given LS grid GD, FL � CnðX� ð0;1ÞÞ and consist of fields with ‘‘approximately’’ bounded spectral
support. That means that the spectral energy content of the second derivative of the LS field decays sufficiently
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fast beyond the maximal grid resolvable mode kD such that we can consider the LS field and its derivatives
(first and second) to have the same support. This assumption can be motivated by the fact that differentiation
in physical space is equivalent to multiplication by wave number k in a spectral space, and therefore it does not
enlarge the spectral support (as oppose to product operation) but merely amplify the energy content of the
smallest modes.

A class of the LS fields FL gives rise to a class of the the small-scale (SS) fields based on decomposition:
Fig. 1.
Maxim
uS
i ¼ ui � uL

i ; pS ¼ p � pL ð4Þ

In other words, for any LS field uL

i 2FL the difference ui � uL
i 2FS is considered to be the corresponding

SS field and denoted by superscript S.
In spectral space, the SS field, being a complement to the total field, dominates dynamically (relative to the

LS field) for modes beyond kD. There also exists a d-region around kD, which corresponds to the smallest LS
eddy size, where the SS field is energetically comparable with the LS field. Schematically it can be written as
eLðkÞ 	 eSðkÞ; k < kD � d=2

eLðkÞ � eSðkÞ; kD � d=2 < k < kD þ d=2

eLðkÞ 
 eSðkÞ; k > kD þ d=2

8><
>:
where eL and eS are spectral energies of LS and SS field. This is further illustrated in Fig. 1 for the case of
isotropic turbulence. The LS field is explicitly computed based on 323 uniform grid from a forced isotropic
DNS data set given on 1283 grid [39]. The operator SD is the averaging along three orthogonal lines parallel
to coordinates and intersecting at the LS grid cell. The operator ID is chosen to be the cubic spline interpo-
lation and extends the LS field onto the DNS grid. Note that this choice of the splitting produces the SS field
such that the SS energy of the modes with k < kD (LS modes) is greater then the SS energy of the modes with
k > kD which correspond to the SS motions. In case of non-homogeneous turbulence, when non-uniform grids
are used, considerations stay the same with the exception that the LS and the SS energies are functions in 3D
spectral space, i.e., eL(k1,k2,k3), eS(k1,k2,k3) and kD is defined as a closed surface kD(k1,k2,k3) = 0. It is also
clear that the SS field solely depends on the LS field through decomposition Eq. (4), and in principle can be
quite large and even comparable to the LS fields in magnitudes. Nevertheless, we will consistently use the no-
tion of ‘‘small-scale’’ to refer to such fields.

Note that in constructing the classes FL and FS we do not pursue the mathematical rigor. Instead, in this
paper we are concerned with developing a generic computational framework which does not depend on filter-
ing to describe dynamics of the LS turbulent fields.

Decomposition similar to Eq. (4) can be also applied to a product fields obtained from ui and p. For exam-
ple, the non-linear product of velocities uiuj can be written as a sum of the LS and the SS components:
1 10 100
k

10
-8

10
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10
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10
-2

10
0

E
(k

)

SS energy (solid line), LS energy (dashed line) and total DNS energy (thin solid line) spectra for the case of isotropic turbulence.
al grid resolvable mode kD is shown by dotted vertical line.
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ðuiujÞL þ ðuiujÞS ¼ uL
i þ uS

i

� �
uL

j þ uS
j

� �h iL

þ uL
i þ uS

i

� �
uL

j þ uS
j

� �h iS

ð5Þ
To substitute the original problem given by Navier–Stokes equation the following coupled system of the LS
and the SS equations is proposed:

Proposition. Let the LS and the SS velocity and pressure fields be such that ui ¼ uL
i þ uS

i , p = pL + pS, and uL
i ,

pL 2FL, uS
i , pS 2FS. Then a coupled system of the LS and SS the equations:
ouL
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iL

¼ � opL

oxi
þ m

o
2uL

i

ox2
j

ð6Þ

ouS
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iS

¼ � opS

oxi
þ m

o2uS
i

ox2
j

ð7Þ
is equivalent to the original Navier–Stokes equation.

To show that Eqs. (6) and (7) can be obtained from the original Navier–Stokes equation we substitute Eq.
(4) into Eq. (2). Rearranging terms produces the coupled set of the LS and the SS equations:
ouL
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �
¼ � opL

oxi
þ m

o2uL
i

ox2
j
þ F S

i uS
i ; p

S
� �

ð8Þ

ouS
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �
¼ � opS

oxi
þ m

o2uS
i

ox2
j
þ F L

i uL
i ; p

L
� �

ð9Þ
where the forcing terms on the right hand side are given as
F L
i uL

i ; p
L

� �
¼ � ouL

i

ot
� opL

oxi
þ m

o2uL
i

ox2
j

ð10Þ

F S
i ðuS

i ; p
SÞ ¼ � ouS

i

ot
� opS

oxi
þ m

o
2uS

i

ox2
j

ð11Þ
The LS and the SS velocities affect each other through F S
i , F L

i , which explicitly depend only on the corre-
sponding LS or SS fields, and the non-linear product term. It is seen that both Eqs. (8) and (9) represent the
same Navier–Stokes equations, only written for different velocities uL

i or uS
i . In spite of the similar functional

form, Eqs. (8) and (9) would describe different LS and SS evolution problems since they are subject to different
boundary conditions and different forcing given by F L

i and F S
i respectively. Note that these intermediate LS

and SS equations are dictated by decomposition ui ¼ uL
i þ uS

i . This equation can be viewed as a redundant
change of variables from ui to twice bigger set of variables uL

i ; u
S
i

� �
. As a result, one needs to specify six gov-

erning equations to describe the problem. However, introduction of twice bigger set of variables leads to
increase of dimensionality of phase space. We make use of this redundancy by exploiting properties of the
LS and the SS fields to simplify Eqs. (8) and (9).

Explicitly expressing the LS and the SS parts of the non-linear term in both equations according to Eq. (5)
gives another set of the LS and the SS equations:
ouL
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iL

¼ � opL

oxi
þ m

o
2uL

i

ox2
j
þ GS

i uL
i ; u

S
i ; p

S
� �

ð12Þ

ouS
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iS

¼ � opS

oxi
þ m

o2uS
i

ox2
j
þ GL

i uL
i ; u

S
i ; p

L
� �

ð13Þ
Here, the LS and the SS forcing terms GS
i , GL

i are given by
GL
i uL

i ; u
S
i ; p

L
� �

¼ F L
i uL

i ; p
L

� �
� o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iL

ð14Þ

GS
i uL

i ; u
S
i ; p

S
� �

¼ F S
i ðuS

i ; p
SÞ � o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iS

ð15Þ
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Both Eqs. (12) and (13) are still equivalent to the original Navier–Stokes equation and can be re-written in a
compact form:
Fig. 2.
GL

i þ G
dashed
GL
i uL

i ; u
S
i ; p

L
� �

þ GS
i uL

i ; u
S
i ; p

S
� �

¼ 0 ð16Þ
It is seen that, under our assumption, GL
i and GS

i represent the LS and the SS fields, since all terms in their
definitions belong to FL or FS class, respectively. In particularly, Eq. (16) holds if both the LS and the SS
parts are equal to zero simultaneously:
GL
i uL

i ; u
S
i ; p

L
� �

¼ 0; GS
i uL

i ; u
S
i ; p

S
� �

¼ 0 ð17Þ
To present some supportive arguments that solution given by Eq. (17) is a good candidate to be a unique
solution of Eq. (16) we use a proof by contradiction. We assume that Eq. (17) is not true, i.e., GL

i 6¼ 0. As a
result, GL

i , being the LS field, has substantial non-zero energy in LS modes. Without loss of generality one can
assume that most energy is concentrated at some wave number kL < kD which is well into the LS spectral con-
tent, as shown schematically in Fig. 2(a). From Eq. (13) it is seen that GL

i is the forcing term for the SS velocity
field uS

i . Therefore, the solution of the SS equation subject to the LS forcing would cause the SS energy eS not
to be small in comparison with the LS energy eL for the LS mode spectral content (k < kD), which contradicts
to the definition of the SS velocity field since uS

i 62FS.
Thus the LS spectral content of GL

i should be negligible or zero in the neighborhood of kL. If one moves kL

towards the cut-off wave number kD, then it is clear that the same reasoning can be applied up to the d-neigh-
borhood of kD. As a result, GL

i should be zero function, or a function which is negligible everywhere, except the
d-neighborhood of kD, as shown in Fig. 2(b). From Eq. (16), it is seen that GS

i should be also zero function, or
the same function as GL

i (with an opposite sign) and with the same spectral content negligible everywhere and
peaking at kD. This can be written schematically as
(a) Sketch of the assumed spectral energy of GL
i forcing term; (b) sketch of a possible spectral energy of GL

i which would satisfy
S
i ¼ 0. Note that GL

i does not represent neither the LS field nor the SS field. Typical spectral energy of the LS field is shown by
line. Maximal grid resolvable mode kD and LS mode kL are shown by dashed vertical lines.
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eLðkÞ � eSðkÞ � e; k < kD � d=2

eLðkÞ � eSðkÞ � eD; kD � d=2 < k < kD þ d=2

eLðkÞ � eSðkÞ � e; k > kD þ d=2

8><
>:
with e
 eD.
It is now seen that being this non-zero function, GL

i and GS
i both lose their LS and SS properties, and

do not belong to FL and FS classes anymore. Clearly, GL
i and GS

i do not have substantial LS or SS
energy contents over the corresponding range of scales, thus GL

i 62FL and GS
i 62FS. In fact, they become

indistinguishable, and the decomposition loses its meaning. Therefore, Eq. (17) must be hold, since zero
function is the only element which belongs to both FL and FS classes simultaneously. Substituting Eq.
(17) into Eq. (12) and (13) gives the LS equation (6) and the SS equation (7). Note that the spectral over-
lap between uL

i and uS
i does not affect these arguments since they are applied to the forcing terms GL

i and
GS

i only.
A proof in the opposite direction follows immediately, if one adds Eq. (6) and (7). Then, it is seen that the

sum of the LS and the SS solutions uL
i þ uS

i , pS + pL satisfies the original Navier–Stokes equations.
The forcing terms F S

i , F L
i can also be written in alternative form. Eqs. (14) and (15) give
F L
i ¼

o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iL

; F S
i ¼

o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �h iS

ð18Þ
As a result, the non-linear convective term in the SS equation represents the SS part of the total convective
term and can be further rewritten in a more convenient form. Substituting Eq. (18) into Eq. (7) gives the equiv-
alent form of the SS equation:
ouS
i

ot
þ o

oxj
uL

i þ uS
i

� �
uL

j þ uS
j

� �
¼ � opS

oxi
þ m

o
2uS

i

ox2
j
þ F L

i ð19Þ
Remark 1. The LS equation (6) is, in fact, the standard LES equation. Rewriting the LS equation using LES
notation, i.e., uL

i ! �ui, uS
i ! u0i, pL ! �p gives
o�ui

ot
þ o

oxj
�ui�uj ¼ �

o�p
oxi
þ m

o2�ui

ox2
j
� o

oxj
ðuiuj � �ui�ujÞ ð20Þ
where the last term represents the derivative of the residual stress sij ¼ uiuj � �ui�uj ¼ u0iu
0
j þ �uiu0j þ u0i�uj In

LES, Eq. (20) is usually derived by filtering of the original Navier–Stokes equations and assuming commu-
tativity between filtering and differentiation. Similarly Eq. (6) can be formally obtained by applying LD to
the original Navier–Stokes equation, and further assuming its commutativity with differentiation. However,
the formal application of LD to derive the LS equation is questionable on at least two accounts. First, it
implicitly assumes that the LS solution should be sought only in particular form, as defined by specific
structure of LD, which is not known in general. This might effectively narrow the LS class FL. Second,
the intermediate presence of the discrete averaging operator SD might potentially destroy the well-posedness
of the LS problem (which should be desired criterion for mathematically consistent LS models [40]). For
these reasons in the present formulation we do not derive the LS equations based on formal application
of LD, or filtering.

Remark 2. Similar qualitative reasoning which was used to justify Eq. (17) can be also applied to the conti-
nuity constraint, which leads to the LS and SS equations, riuL

i ¼ r and riuS
i ¼ �r. Here, a function r(x) is

zero, or has a negligible energy content everywhere except a neighborhood of kD. To satisfy a requirement
of being the LS and the SS field simultaneously, one has to choose r(x) = 0 which results in the LS and the
SS continuity equations:
ouL
i

oxi
¼ 0;

ouS
i

oxi
¼ 0 ð21Þ
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Physically, such an interpretation of r(x) has also clear meaning by specifying incompressible the LS and
the SS velocity fields, as opposed to a case where r(x) 6¼ 0. By considering different kD, it is seen that in latter
case r(x) should depend on kD which leads to unclear physical constraints for the LS and the SS velocities.

In summary, the coupled system of Eqs. (6) and (19) along with the constraint (21) supplied by appropriate
initial and boundary conditions completely defines evolution of the LS and the SS fields in TLS approach.

4. Treatment of the 3D small-scale equation

Numerical simulation of the 3D SS equation is computationally challenging since it would require the res-
olution of the whole range of small-scales. On the other hand, the LS equation is solved on a coarse LS grid
with a time step comparable to the characteristic turnover time of the smallest resolvable LS eddy. As a result,
the complete knowledge of the SS field in space and time is not necessary since one only needs to know the SS
fields on the LS grid at the LS time scale in order to close the LS equation.

To reduce computational expenses, while retaining two-way coupling between the LS and the SS fields, the
SS equation (Eq. (19)) is solved on a collection of 1D lines embedded in domain X, rather than in the whole
domain X. In general, there are no any restrictions on the position of lines in X and their curvature. Here, for
simplicity, we consider a family of lines Xl ¼ flj

kg, k = 1,2,3, j = 1, . . . ,Nk, which consists of
P

kN k lines that
are parallel to the corresponding LS coordinates {xk} and intersect each other at the LS grid nodes as shown
in Fig. 3, and introduce the SS fields defined on these lines as
Fig. 3.
schema
uS
i ðx; tÞ ! uS

i;lk
ðlk; tÞ; x 2 lk � X ð22Þ
The SS field uS
i;lk

is viewed as a snapshot of the SS turbulent velocity along line lk.
In TLS we resolve the SS field in the domain Xl only, while the LS field is simulated in X. Assuming that one

needs N 3
S points to resolve the smallest dynamically important scales for DNS, and N 3

L points to resolve the
large-scale dynamics, as in LES, results in the TLS resolution requirement of N 3

L þ 3N 2
LNS points to represent

both the LS and the SS fields. Thus, the TLS approach would fall in a category between DNS and LES. How-
ever, it is often the case for LES that N 3

L has to be quite high (NL! NS) in highly turbulent regions, for exam-
ple near walls, to accurately predict the LS dynamics because of the inherent limitations of the SGS models
[41]. In TLS, since the LS and the SS are explicitly coupled, the less severe resolution requirements are
l1

l3

l2

Us(l2)

Us(l3)

Us(l1)

The SS 1D line arrangement within a 3D LS grid cell in the TLS model. One component of the SS velocity is shown on each line
tically.
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expected. In addition, simulation of the SS fields on the 1D lines, which requires 3N 2
LNS point resolution, can

be done in parallel, thereby, reducing computational cost substantially.
Treating the SS fields on the reduced domain Xl is computationally more efficient, but there is a price to

pay. When written on a line, say l1 = {x1,x2 = C2,x3 = C3}, where C2, C3 are constants, the SS equation
(19) is not closed and requires knowledge of the first derivatives of the SS velocity and pressure, and the
second derivatives of SS velocity in the directions l2, l3 (which are orthogonal to the line l1). Thus, all deriv-
atives of the SS fields in transversal directions to a given line have to be modeled, although, all derivatives
along the line can be computed as a part of solution. The second difficulty arise from the fact that at the LS
grid nodes, where the lines lk intersect, the SS field becomes overdetermined since its values can be found
from all three intersecting lines, and these values are not necessarily the same. Explicit requirement to have
unique values of the SS fields at the LS grid points would lead to coupling of SS fields on different lines at
those points, and therefore, is not viable computationally. Instead, we decouple the SS field computations
on lines, which means that the SS fields do not interact each other if they belong to different lines. At the
same time all realizations are still used to obtain the SS fields on the LS grid. Thus, the value of the SS
fields at the node {xn} of the LS grid cell Vn is defined as an average over all three lines belonging to
Vn and intersecting at {xn}, which is essentially an operational definition of SD operator (Eq. (3)). For
example,
uS
i

� �Lðxn; tÞ  uS
i;lk
ðlk; tÞ

h i
lk

; uS
i uL

j

h iL

ðxn; tÞ  uS
i;lk

uL
j;lk
ðlk; tÞ

h i
lk

uS
i uS

j

h iL

ðxn; tÞ

 uS
i;lk

uS
j;lk
ðlk; tÞ

h i
lk

; fxng ¼
\3
k¼1

lk; lk \ V n 6¼ Ø ð23Þ
where the local average over intersecting orthogonal lines lk in the cell Vn is denoted as ½ �lk
. Note that in order

to close the LS equations we need know the LS values of the mutual product of the SS velocities uS
i uS

j and the
mixed products uS

i uL
j , uL

i uS
j rather than the SS velocity itself. Explicit computation of these SGS terms requires

knowledge of the SS velocity on each line.
Here, we propose the following model assumptions (justified, in part, by a priori analysis of DNS data and

by a posteriori study of high-Re forced isotropic turbulence) which provide the necessary simplification for the
SS equation and enable us to estimate the unknown SS velocity on lines lk. These assumptions allow to express
the unknown (transverse) SS derivatives in terms of the known (longitudinal) SS derivatives, and are
following:

(i) For each SS velocity component uS
i , the SS second derivative along the line lk is equal to the averaged

sum of the SS second derivatives along all three orthogonal directions:
o2uS
i

ox2
k

¼ 1

3

X3

j¼1

o2uS
i

ox2
j
; i; k ¼ 1; 2; 3 ð24Þ
(ii) Changes of the SS part of the convective derivatives of the SS velocity components are neglected in direc-
tions transverse (j 6¼ k) to the line lk:
o

oxj
uS

j þ uL
j

� �
uS

i þ uL
i

� �h iS

¼ o

oxj
uS

j ðlkÞ þ uL
j

� �
uS

i ðlkÞ þ uL
i

� �h iS

ð25Þ
These assumptions lead to the simplified form of the SS equation on each line lk:
ouS
i

ot
þ o

oxj
uS

j ðlkÞ þ uL
j

� �
uS

i ðlkÞ þ uL
i

� �h i
¼ 3m

o2uS
i

ox2
k

þ F L
i uS

j ðlkÞ; uL
j

� �
; ð26Þ
where
F L
i uS

j ðlkÞ; uL
j

� �
¼ o

oxj
uS

j ðlkÞ þ uL
j

� �
uS

i ðlkÞ þ uL
i

� �h iL
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Note, here k is a free index and refers to a line lk which is parallel to the corresponding coordinate xk. Thus,
for different lines Eq. (26) produces different equations for the same SS velocity component. For example, for
lines l1, l2 and uS

1 we have:
ouS
1

ot
þ o

oxj
uL

j þ uS
j ðl1Þ

� �
uL

1 þ uS
1ðl1Þ

� �
¼ 3m

o2uS
1

ox2
1

þ F L
1 uS

j ðl1Þ; uL
j

� �
ð27Þ

ouS
1

ot
þ o

oxj
uL

j þ uS
j ðl2Þ

� �
uL

1 þ uS
1ðl2Þ

� �
¼ 3m

o2uS
1

ox2
2

þ F L
1 uS

j ðl2Þ; uL
j

� �
ð28Þ
To solve Eq. (26), boundary conditions for the SS velocity field have to be specified. In our case of the
forced isotropic turbulence, the periodic boundary conditions are assumed for all lines. For more complex,
non-homogeneous flows, the SS boundary conditions are specified depending on the line position, and have
to be consistent with the definition of the SS based on decomposition (Eq. (4)).

In Eq. (26) the SS pressure gradient opS/oxi is explicitly excluded. In other words, we relax the divergence-
free requirement for the SS velocity along the line lk, i.e. , ouS

j =oxj 6¼ 0. In principle, the SS pressure can be
included in Eq. (26) by specifying the LS pressure, and an additional equation for the SS pressure. For exam-
ple, taking the divergence of Eq. (8) and using Eq. (21) we have:
o
2pS

ox2
i
¼ � o

2pL

ox2
i
�

o uL
i þ uS

i

� �
oxj

oðuL
j þ uS

j Þ
oxi

ð29Þ
In our case, the non-enforcement of the SS continuity is an artifact of the incompressible fluid model and
the adopted numerical approach. The continuity equation is used for the LS velocity only, and implemented
according to the standard fractional step (projection) method by computing intermediate non-divergence free
LS velocity field. If the current approach is adopted for a compressible flow then the continuity requirement
will appear naturally as a separate governing equation for the SS density.

There is a noticeable lack of comprehensive analysis of the SS velocity derivatives in LES literature. Most
studies are concerned with modeling of the SGS stress which represents the LS quantity and do not require
explicit knowledge of the SS fields or their derivatives. Here, to address the model assumptions (i) and (ii)
from a physical point of view, we conduct a priori statistical analysis of a high-Re forced isotropic turbu-
lence DNS data set [39]. The turbulent velocity field corresponds to a Taylor scale Reynolds number
Rek � 140 and is given on a box of 2563 grid points. The LS field is computed based on the uniform 323

LS grid using cubic spline interpolation, and then subtracted from the total velocity to obtain the SS
velocity.
4.1. Assumption (i)

The model assumption (i), Eq. (24), corresponds to the case when the difference between the SS second deriv-
ative in particular direction lk and the averaged sum of the SS second derivatives in all three directions is equal
to zero, i.e., Sik = 0 where Sik ¼ ð

P3
j¼1o

2uS
i =ox2

j Þ=3� o
2uS

i =ox2
k . This is supported by Fig. 4(a) and (b) where all

nine (i,k = 1,2,3) normalized probability density functions (PDF) f(Sik) are shown. It is interesting to note that
they all fit the Tsallis distribution quite well for wide range of probabilities. The Tsallis distribution was used in
the context of turbulence by Beck [42]. It has a form PT(n) = 1/(Zq[1 + (1/2)b(q � 1)n2]1/(q�1)) where Zq is a
normalization constant and b = 2/(5 � 3q) is chosen to give a unit variance. It also reduces to a Gaussian dis-
tribution as q! 1. These figures show that the most probable state for the derivative differences Sik is zero, or
the second derivatives in orthogonal direction are equal each other with a very high probability.

These PDFs exhibit the most probable state at the origin (Sik = 0). In other words dissipative influence of
low probable and rare events characterized by Sik 6¼ 0 is excluded from consideration by adoption of Eq. (24).
However, this approximation can still adequately account for dissipative influence of high gradient events
which dominate turbulent flow regions. Conceptually, one can divide events where Sik = 0 in two qualitatively
different groups. The first group represents a case when the SS second derivatives are small, so the differences
Sik are small too. Physically, points with this property would correspond to weakly turbulent flow regions
which are adequately represented by the resolved LS. The second group corresponds to a case when the SS
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Fig. 4. PDFs of the normalized differences of the second SS derivatives, Sik ¼ ð
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distribution (dashed line): (a) in linear scale, (b) in logarithmic scale. Note that all nine PDFs are shown here.
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second derivatives are not small and approximately equal each other. These flow regions are characterized by
intense turbulence, high dissipation and pronounced effect of the SS on the LS dynamics.

This can be clarified further by considering the joint PDFs of ð
P3

j¼1o
2uS

i =ox2
j Þ=3 and o

2uS
i =ox2

k which are
shown in Fig. 5(a) and (b). It is seen that at the origin the joint PDF exhibits a characteristic spike. Contour
lines for high probabilities are approximately oval in shape and elongated along a bisector of I and III quad-
rants. For lower values of probability the contour lines resemble parallelograms with smoothed corners. We
also note that events where the second derivative o2uS

i =ox2
k is large in magnitude and has the same sign as the

averaged sum ð
P3

j¼1o
2uS

i =ox2
j Þ=3 are more probable and provide major contribution to the tail of the joint

PDF. Therefore, with high probability, we may expect that in intense turbulent regions if the second derivative
of the SS velocity component is large in magnitude in one particular direction it should be large and of the
same sign in other two orthogonal directions.

The bisector of I and III quadrants corresponds to the model assumption (i), Sik = 0. It is seen that events
from the first group occur in the neighborhood of the origin and happen with the highest probability. As we
move along the diagonal from the origin the magnitude of the SS second derivative increases, probability
decreases, suggesting the presence of highly turbulent regions where the LS resolution becomes inadequate.
Note that the model assumption Sik = 0 corresponds to the delta function PDF at the origin, see Fig. 4(a)
and (b). As a result, all events which correspond to Sik 6¼ 0 are formally excluded from the consideration.



16.0

8.0

0.0

-8.0

-16.0
-16.0 -8.0 0.0 8.0 16.0

(a)

16.0

8.0

0.0

-8.0

-16.0
-16.0 -8.0 0.0 8.0 16.0

(b)

1 3
3 j=

1
∂
2
u

S i

∂
x
2 j

/
1 3

3 j=
1

∂
2
u

S i

∂
x
2 j

r
m

s

∂2uS
i

∂x2
k

/ ∂2uS
i

∂x2
k

rms

/

/

Fig. 5. Contour plots of the logarithm of the joint PDF of the normalized SS second derivative along the line lk and the averaged sum of
the SS second derivatives: (a) longitudinal velocity component i = k, (b) transverse velocity component i 6¼ k.

K.A. Kemenov, S. Menon / Journal of Computational Physics 220 (2006) 290–311 303
However, as suggested by Figs. 5(a) and (b) the model is not ‘‘blind’’ to the presence of intense SS turbulent
structures. Large values of SS second derivatives are still allowed on the diagonal Sik = 0.

For the further qualitative interpretation of the model assumption Sik = 0 we consider the joint PDF as
shown in Fig. 6 for the case of the SS longitudinal derivative (i = k). Assume that the SS second derivative
is sufficiently large and correspond to the point A suggesting the presence of the high turbulence region. A
vertical plane through A and orthogonal to the x-axis defines a conditional PDF f ðð

P3
j¼1o

2uS
i =ox2

j Þ=
3jo2uS

i =ox2
k ¼ aÞ. It is seen that this conditional PDF is positively skewed giving the the most probable value

of the averaged sum ð
P3

j¼1o
2uS

i =ox2
j Þ=3 around point B. On the other hand, the line defined by the model

assumption Sik = 0 intersects with the conditional plane at point C. Due to the shape of the joint PDF, point
C will always stay higher (or lower) than the maximum point B if o2uS

i =ox2
k is positive (or negative) and suf-

ficiently large in magnitude. Thus, the model assumption Sik = 0 makes the larger value of the sum of the SS
second derivative more probable which can be viewed as if the value of local viscosity is higher, which means
that the SS vortical structures are more dissipative.
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4.2. Assumption (ii)

The model assumption (ii) (Eq. (25)) allows to represent the SS line equations in the closed form. Physically
it means that the SS effects that are caused by advection of the SS velocity, in the line orthogonal directions,
are small in comparison the SS effects due to the advection of the LS field. To show this it is convenient to
rewrite assumption (ii) in non-conservative form with the help of the continuity equation:
o

oxj
uS

j þ uL
j

� �
uS

i þ uL
i

� �h iS

¼ o

oxj
uS

j þ uL
j

� �
uS

i þ uL
i

� �
� F L

i uL
i ; u

S
i

� �

¼ uS
k ðlkÞ þ uL

k

� � o

oxk
uS

i ðlkÞ þ uL
i

� �
þ uS

j ðlkÞ þ uL
j

� � ouL
i

oxj|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j 6¼k

�F L
i ð30Þ
Note that the SS advection term is fully accounted along line lk since derivatives of the SS velocity are always
available.

Contours plots of the joint PDFs of the total SS convective terms and the modeled SS convective terms are
exhibited in Figs. 7(a)–(c). Three cases are shown, which correspond to different orientation of the velocity
components and the line lk. It is seen that the contour lines have similar oval shapes for high probabilities cor-
responding to the small values of the SS convective terms. As the magnitude of the SS convective terms grows
and the probability sharply decreases, the contour plots start resembling rectangular which is stretched along
the bisector of I and III quadrants. The shape of PDFs is also almost independent of the direction of the SS
convective derivatives. SS events, when both the total and the modeled SS convective terms have the same sign
are more dominant. Due to a rectangular shape of the PDFs, a similar qualitative reasoning, which has been
used for the SS second derivatives, is applicable here too (see Fig. 6). Accordingly, the model assumption (ii)
would correspond to a case when the SS convective derivatives consistently admit values higher in magnitude
than the most probable values of the total SS convective derivatives. Qualitatively, it means that the modeled
SS field is subject to higher distortion by the SS advection than the exact SS field.

The SS equation (26) allows reconstruction of the SS velocity on line lk if the LS velocity is known. Phys-
ically, the LS velocity evolves on a slower time scale than the SS velocity and requires discretization with a
bigger time step. To close the LS equation it is not necessary to resolve the fast SS dynamics at all times,
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one only needs to know the SS velocity field at particular instants of the slow LS time tL
m. To achieve this one

can integrate Eq. (26) in small neighborhood of tL
m treating the LS velocity as time independent field. In other

words, for any LS time tL
m and a small parameter �
 1, we introduce a local time coordinate tS = �t according

to the transformation: t! tL
m þ tS such that uLðlk; tÞ ! uLðlk; tL

mÞ and uSðlk; tÞ ! uSðlk; tL
m þ tSÞ. The SS velocity

evolves from zero initial state and depends only on the LS velocity and its derivatives.
Physically, evolution of the SS velocity according to Eq. (26) is interpreted as the propagation of energy

disturbances down into the SS part of the turbulent spectrum due to non-linear interaction. Starting from
a zero initial state, the SS velocity starts growing, continuously exciting smaller scales until the viscous dissi-

pation region is reached. The term uL
i uL

j

h iS

, which is the only non-zero term at tS = 0, acts as a constant source

of energy for the small-scales, triggering the forward energy cascade. We point out that even though the LS
velocity is kept fixed in time tS, this problem does not constitute an evolution of the SS velocity in the ‘‘frozen’’
LS environment. The time tS corresponds to the time needed to ‘‘fill up’’ the SS part of the spectrum. As a
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result, the SS velocity at some instant of time tL
m does not depend on the SS solution at previous time tL

m�1, i.e.,
it is memoryless, and is solely defined by the LS velocity and its derivatives at tL

m. This is illustrated in Figs. 8
and 9. The SS velocity and the SS spectral energy are shown for three consecutive instants of time tS. Due to
non-linear interactions between the LS and the SS fields, energy starts cascading down to the SS part of spec-
trum eventually creating the SS velocity field. It is seen that at the final stage the SS energy spectrum matches
the SS part of DNS spectrum quite well.

The evolution time needed to reconstruct the SS velocity field is determined by matching the LS and the SS
energies at the minimal scale resolvable by the LS grid. Clearly, this time is unique for different lines and fully
defined by the LS velocity, its derivatives and viscosity. Isotropic velocity field and parallel line arrangements
allow us to consider an average energy along lines, which is given in Fig. 10. Here, the averaged (along l1 lines)
SS spectrum is shown with the DNS and exact SS energy spectra. It is seen that the overall comparison of the
SS spectra is quite satisfactory. However, the averaged SS spectrum exhibits small deviation from the exact SS
spectrum by redistributing more SS energy in favor of smaller scales, closer to dissipation range. This is prob-
ably a manifestation of the adopted assumption given by Eq. (25).

Numerical implementation of TLS is based on simulation of the LS field coupled with the SS equations
which approximate the SS turbulent dynamics on lines. The line arrangement constitutes an important part
of the SS model. The optimal line placement and its affect on the reconstructed SS field, due to neglecting
of transverse SS advection, on its own present a non-trivial, challenging problem. In the ideal case the lines
are exact streamlines of the SS velocity field. Here, we adopt a three orthogonal line arrangement where lines
intersect at the center of the LS grid nodes. Given the LS and the SS grid arrangements, there are four steps
involved in TLS algorithm:
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Fig. 8. Time evolution the SS velocity profile on a line for three consecutive instants tS.
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Fig. 9. Time evolution of the SS energy spectra (solid line) compared with the DNS spectrum (thin solid line) on a line for three
consecutive instants of tS. The LS grid resolution is shown by dotted vertical line.
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Fig. 10. Average line energy spectra: DNS (thin solid line), filtered SS (solid line), reconstructed SS (circles). LS grid resolution is shown
by dotted vertical line.
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(i) At the m-th time step tL
m, interpolate uL

i and pL onto each line lk, such that
uL
i xn; tL

m

� �
! uL

i;lk
lk; tL

m

� �
; pL xn; tL

m

� �
! pL

lk
lk; tL

m

� �
; xn 2 lk
(ii) Evolve Eq. (26) on each line lk with zero initial condition and corresponding boundary conditions until
the SS energy is matched with the LS energy at the LS grid minimal resolvable scale to obtain the SS
velocity field uS

i;lk
lk; tL

m

� �
;

(iii) For all LS grid points xn calculate the mutual tensor product of the SS velocity uS
i uS

j

h iL

as well as the

mixed tensor products uS
i uL

j

h iL

and uL
i uS

j

h iL

by averaging over three lines intersecting at the LS grid point

xn belonging to the cell Vn, according to Eq. (24):
uS
i uS

j

h iL

xn; tL
m

� �
 uS

i;lk
uS

j;lk
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m

� �h i
lk

; uS
i uL

j

h iL

xn; tL
m

� �
 uS
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uL
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m

� �h i
lk
(iv) Advance the LS fields uL
i xn; tL

m

� �
, pL xn; tL

m

� �
to the next time level tL

mþ1 ¼ tL
m þ DtL by integrating the LS

equations.

5. TLS of forced isotropic turbulence

The forced isotropic turbulence presents the important ideal case to evaluate turbulence modeling
approaches. TLS of the forced isotropic turbulent flow has been conducted to study the ability of the model
to sustain the stationary turbulent state at the LS and the SS levels, and to provide an adequate energy cou-
pling between LS and SS.

A uniform 323 LS grid is used to discretize 2p cubic domain. A standard, second order projection method of
van Kan [43] is employed to solve the LS equations. Spatial discretization is done on the staggered grid using
finite volume formulation. A third-order, low storage Runge–Kutta scheme is employed for temporal discret-
ization [44]. Two cases for the Taylor scale Reynolds number Rek � 65 and 114 are considered. All SS lines
have uniform resolution of 128 and 256 grid points for the low and high-Reynolds number cases, respectively.
A matching DNS for the low Reynolds number case has been also performed by applying the same forcing on
1283 grid for comparison purposes. For the chosen LS grid resolution, TLS code requires about one single-
processor hour on IBM SP4 to reach the stationary turbulent state, while it takes almost 17 h of CPU time
for DNS. Both codes were run in serial mode with the exception of the SS computation for the TLS model,
which is done in parallel using 48 processors.

Both simulations start with zero initial conditions and periodic in space. The force is concentrated around
small wave numbers and gradually drives the flow to the stationary state. Here, we adopt the forcing scheme of
Eswaran and Pope [45]. The random force of the form f̂ iðk; tÞ ¼ ðdij � kikj=k2Þwjðk; tÞ � ½HðkÞ �Hðk� kF Þ� is



used, where wj is Uhlenbeck–Ornstein stochastic process, dij is the Kronecker delta and H is the Heaviside
function. The process is of diffusion type, has zero mean and correlated over time with a chosen time scale
s. For a given grid resolution, three parameters define the intensity of forcing: the amplitude r, the time-scale
s and the maximum wave number of the forced modes kF. Here, we have taken the value of kF, normalized by
the lowest wave number, to be equal to

ffiffiffi
2
p

. With the time scale s = 0.95 and 0.8, and the amplitude r = 0.04
and 0.007, the forcing scheme produces the isotropic turbulent fields with Rek � 65 and 114, respectively.
However, as it was pointed out by Fureby et al. [46] who used this method to study LES subgrid models,
the same forcing cannot be guaranteed for different grid resolutions even with the same forcing parameters.
As a result, the DNS case only approximately achieves Rek � 60 which is less then Rek � 65 of the TLS case.
Nevertheless, for comparison purposes it does not appear to be a serious issue.

Time evolution of the root-mean-square (rms) of the LS velocity components huL
i irms along with the aver-

aged rms-velocity scale are shown in Fig. 11(a). It is seen that the stationary state is reached at time T � 8 for
both cases. Fig. 11(b) shows the compensated energy spectra of TLS and DNS cases after the stationary state
is reached. Both TLS energy spectra approximate the DNS spectrum quite satisfactorily. These figures suggest
that TLS is able to sustain the turbulent stationary state well and the SS coupling does not destroy the isotropy
of the LS flow.

However, TLS cases result in a small build-up of energy near the LS cut-off wave number. It can be related
to the fact that the SS velocity field might be underestimated on some lines, thus providing diminished dissi-
pative effects on scales at the LS grid cut-off level. In TLS, the SS fields are evolving from zero to the point
when the LS and SS spectra are matched at the minimum resolvable LS scales. Generally, the SS evolution
time, which is required to match LS and SS spectra, is different for various lines. Matching spectral condition
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is important to simulate correct coupling between the LS and the SS velocity fields. If the SS field grows too
much it would produce unphysical effects on the LS field by backscattering extra energy at the LS grid level,
eventually contaminating the LS field. On the other hand, if the SS field is underpredicted in spectral magni-
tude at the LS grid cut-off level, it would not provide enough dissipation to the LS field causing the energy pile-
up by blocking forward cascade.

The SS evolution time is also a function the local Reynolds number and the LS grid resolution. The more
LS are resolved the less time is needed to reconstruct the SS field and vice versa. On the other hand, the higher
the Reynolds number, the larger is the range of scales that is needed, and longer time is required to fill up the
modeled SS part of the spectrum. Further study is needed to address the SS evolution time sensitivity to the LS
grid resolution and the Reynolds number.

6. Conclusion

A novel approach, which is alternative to traditional LES, two level simulation has been developed based
on the explicit simulation of the small-scale velocity fields. A coupled system of the large and small-scale gov-
erning equations, that is not based on an eddy-viscosity type of assumptions and requires no adjustable
parameters, has been derived based on the decomposition of flow fields into the large-scale and the small-scale
components. To alleviate complexity of simulation, the small-scale equation has been treated on a domain
with a reduced dimension representing a collection of 1D lines. The small-scale equation has been studied
by simulating the forced isotropic turbulence. Reconstruction of the SS field in 3D requires some modeling
since SS derivatives in the directions transverse to the line direction are not available. To validate SS model
assumptions statistical analysis of the SS derivatives has been performed based on DNS data set. It has been
shown that the resulting simplified SS velocity equation is able to reconstruct the SS velocity based on the LS
velocity field only, without invoking the eddy-viscosity hypothesis or using modeling constants. Fully coupled
implementation of TLS has been demonstrated for a case of the forced isotropic turbulence at Rek � 65 and
114.

The current approach is readily extendable to treat high-Re non-homogeneous turbulent flows. A priori

analysis of the SS derivatives for a high-Re turbulent channel DNS data shows strong similarity with the
SS derivatives of the homogeneous and isotropic turbulence. This can provide a certain level of justification
to use the modeled SS equation for non-homogeneous turbulent flows. This study will be reported in the near
future. Overall, results suggest that the TLS approach has the potential for capturing high-Re turbulent flow
behavior using rather coarse grids by simulating the SS fields in unresolved flow regions. More importantly,
the TLS formulation provides a useful framework for treating complex turbulent flows by not resorting to the
concept of the filtering.
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